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1 A quick Introduction to Mathematical Modeling

Main idea of mathematical modeling:

1. Abstraction: real world problem (experimental data) is described by a mathematical
formulation.

2. Aim: find an appropriate mathematical formulation and use the mathematical tools
to investigate the real world phenomenon.

3. No model is THE right one, but only A right one.

A model should be:

• as simple as possible

• as detailed as necessary
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There are two ways doing Biomathematics:

Qualitative theory

Modeling of the basic mechanisms
in a simple way; parameter fitting
and analysis of (concrete) data
doesn’t greatly matter.
The results are qualitative. A rig-
orous analysis of the models is
possible and the qualitative re-
sults can be compared with ex-
perimental results. Quantitative
prediction of experimental results
is not (main) goal of this ap-
proach.

Quantitative theory

Here, the model of the biological
system is very detailed and pa-
rameters are taken from the ex-
periments (e.g. by data fitting).
The analysis of the system is less
important than to get simulations
of concrete situations.
The results are qualitative, quan-
titative prediction should be pos-
sible. It is important to know a
lot of details about the biological
system.

Modeling approaches:

Deterministic approach:

1. Difference Equations: The time is discrete, the state (depending on time) can
be discrete or continuous. Often used to describe seasonal events.

2. Ordinary Differential Equations (ODEs): Time and state are continuous, space
is a homogenous quantities. These approach is often used to describe the
evolution of populations.

3. Partial Differential Equations (PDEs): Continuous time and further continuous
variables, e.g. space. Used for example to model physical phenomena, like
diffusion.

Stochastic approach: Include stochasticity and probability theory in the model. Often
used in the context of small populations (also when few data are available).

.

2 Linear Models

2.1 Discrete linear models

Time-discrete models means that the development of the system is observed only
at discrete times t0, t1, t2, . . . and not in a continuous time course. Assume here that
tk+1 = tk + h where h > 0 is a constant step.

An example for discrete linear models is the Fibonacci equation (1202), which you
probably already know from the highschool. Fibonacci investigated how fast rabbits
could breed, assuming that:

• Rabbits are able to mate at the age of one month and at the end of its second month
the females can produce another pair of rabbits.

• The rabbits never die.

2



• The females produce one new pair every month from the second month on.

The Fibonacci sequence is defined by the following recursive formula:

xn+1 = xn + xn−1.

This equation can be formulated as a 2D discrete-linear system

xn+1 = xn + yn

yn+1 = xn.

Generally, a linear system in 2D can be written as

xn+1 = a11xn + a12yn

yn+1 = a21xn + a22yn

or in matrix notation (
x
y

)

n+1

=

(
a11 a12

a21 a22

)

︸ ︷︷ ︸
Matrix A

(
x
y

)

n

We now look for the stationary states of the discrete system. The stationary state for
a general discrete system xn+1 = f(xn) is a x̄, such that x̄ = f(x̄). Obviously, as long as
we consider linear systems, (x̄, ȳ) = (0, 0) is a stationary state.

How to investigate stability.
Consider the system

un+1 = Aun. (1)

Then un = Anu0, n = 0, 1, 2, . . . is the solution of (1) with initial condition u0. Let λ
an eigenvalue of A with the corresponding eigenvector u, then we have Anu = λnu and
un = λnu0 satisfies the difference equation (1).
For u0 being a linear combination of eigenvectors of A, u0 = b1v1 + . . . + bkvk, (λi corre-
sponding eigenvalue of the eigenvector ui) we get as the solution of (1):

un = b1λ
n
1v1 + . . . + bkλ

n
kvk.

For the matrix A, the spectral radius ρ(A) is defined by

ρ(A) := max{|λ| : λ is eigenvalue of A}.

Theorem 1 Let A be a m × m matrix with ρ(A) < 1. Then every solution un of (1)
satisfies

lim
n→∞

un = 0.

Moreover, if ρ(A) < δ < 1, then there is a constant C > 0 such that

‖un‖ ≤ C‖u0‖δn

for all n ∈ N0 and any solution of (1).
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Remark: If ρ(A) ≥ 1, then there are solutions un of (1) which do not tend to zero for
n → ∞. E.g., let λ be an eigenvalue with |λ| ≥ 1 and u the corresponding eigenvector,
then un = λnu is a solution of (1) and ‖un‖ = |λ|n‖u‖ does not converge to zero for n →∞.

What happens, if the spectral radius reaches the 1?

Theorem 2 Let A be a m×m matrix with ρ(A) ≤ 1 and assume that each eigenvalue of
A with |λ| = 1 is simple. Then there is a constant C > 0 such that

‖un‖ ≤ C‖u0‖

for every n ∈ N and u0 ∈ Rm, where un is solution of (1).

From now on, we consider a linear two-dimensional discrete system,

ut+1 = Aut, (2)

where ut is a two-dimensional vector and A a real 2× 2 matrix (nonsingular).

A “fast formula” for the computation of the eigenvalues is

λ1,2 =
1

2
tr(A)± 1

2

√
tr(A)2 − 4det(A)

Let λ be an eigenvalue, then the corresponding eigenvector(s) v, is(are) defined by

Av = λv ↔ (A− λI)v = 0.

Theorem 3 For any real 2 × 2 matrix A there exists a nonsingular real matrix P such
that

A = PJP−1,

where J is one of the following possibilities

1.

J =

(
λ1 0
0 λ2

)

if A has two real (not necessarily distinct) eigenvalues λ1, λ2 with linearly indepen-
dent eigenvectors.

2.

J =

(
λ 1
0 λ

)

if A has a single eigenvalue λ (with a single eigenvector).

3.

J =

(
α β
−β α

)

if A has a pair of complex eigenvalues α± iβ (with non-zero imaginary part)

For real eigenvalues:
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Case 1a: 0 < λ1 < λ2 < 1 ⇒ (0,0) is a stable node
All solutions of equation (2) are of the form

ut = C1λ
t
1v1 + C2λ

t
2v2,

Case 1b: 0 < λ1 = λ2 < 1 ⇒ (0,0) is a stable (one-tangent-)node
There are two possibilities:
If A has one eigenvalue with two independent eigenvectors, case 1a can be slightly
modified and the figure has the form

If A has a simple eigenvalue with only one independent eigenvector (and one gen-
eralized eigenvector v2, i.e. (A− λI)2v2 = 0), then for t →∞, all solutions tend to
0.

Case 2: 1 < λ1 < λ2 ⇒ (0,0) is a unstable node
The solutions go away from 0 for t →∞.
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Case 3: −1 < λ1 < 0 < λ2 < 1Rightarrow (0,0) is a stable node with reflection.
Since λt

1 has alternating signs, the solutions jump between the different branches
(provided that C1 6= 0)

Case 4: λ1 < −1 < 1 < λ2 ⇒ (0,0) is an unstable node with reflection
Unstable equilibrium, the solutions go away from (0,0), jumping in the direction of
v1.

Case 5: 0 < λ1 < 1 < λ2 ⇒ (0,0) is a saddle point
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One direction (eigenvector) is stable, the other is unstable.

Case 6: −1 < λ1 < 0 < 1 < λ2 (0,0) is a saddle point with reflection

For complex eigenvalues:

Case 7: α2 + β2 = 1 ⇒ (0,0) is a center

Each solution moves clockwise (with the angle θ) around a circle centred at the
origin, which is called a center.

Case 8: α2 + β2 > 1 ⇒(0,0) is an unstable spiral

The solution moves away from the origin with each iteration, in clockwise direction.

Case 9: α2 + β2 < 1 ⇒(0,0) is a stable spiral
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2.2 Continuous linear models

Example for linear ODE model: Exponential growth.
The simplest nontrivial IVP for ODEs is

ẋ = bx

with x(0) = x0.
The solution is : x(t) = x0e

bt.
We consider a little generalization:

ẋ = bx.

If b > 0, it we have exponential growth, if b < 0 exponential decay. b as actual rate can
also be interpreted as the difference between an underlying growth rate and an underlying
death (or decay) rate.

2.2.1 Existence of solutions of ODEs

Definition 1 (ODE) An equation F (t, y(t), y′(t)) = 0, which relates an unknown func-
tion y = y(t) with its derivative y′(t) = d

dt
y(t), is called an ordinary differential

equation (ODE) of first order, shortly F (t, y, y′) = 0.
Often, the explicit case in Rn is considered:

y′(t) = f(t, y), (3)

where f : G → Rn, G ⊆ R× Rn domain.
In the case n = 1 it is called scalar.
If f does not depend explicitely on t, the ODE (3) is called autonomous.

Definition 2 A solution of equation (3) is a function y : I → Rn, where I 6= ∅, I interval
and

1. y ∈ C1(I,Rn) (or y out of another well-suited function space)

2. graph(y) ⊂ G

3. y′(t) = f(t, y(t)) for all t ∈ I.

Initial value problem: For a given (t0, y0) ∈ G find a solution y : I → Rn with

{
y′ = f(t, y) for all t ∈ I
y(t0) = y0, t0 ∈ I

(4)
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Phase portrait: In the 2D case, y(t) = (y1(t), y2(t)) is plotted in a (y1, y2) coordinate
system, the resulting curves are parametrised by t.

Theorem 4 (Peano, 1890) (Existence theorem-only!) Let f ∈ C(G,Rn) and (t0, y0) ∈
G. Then, there exists an ε > 0 and a solution y : I → Rn of the initial value problem (4)
with I = [t0 − ε, t0 + ε] and graph(y) ⊂ G.

Theorem 5 (Picard-Lindelöf) Let f ∈ C0,1−(G,Rn) and (t0, y0) ∈ G. Then, there
exists an ε > 0 and a solution y : I → Rn of the initial value problem (4) with I =
[t0 − ε, t0 + ε] and graph(y) ⊂ G. Furthermore, y is determined uniquely in I, i.e. for
any solution z : J → Rn of the initial value problem is y|I∩J = z|I∩J .

Remark: f is called Lipschitz continuous(indicated by C1−) in G with respect to y, if
there exists a constant L > 0 with

‖f(t, y)− f(t, z)‖ ≤ L‖y − z‖ for all (t, y), (t, z) ∈ G.

Definition 3 A solution y : I → Rn of the initial value problem (4) is called maximal, if
there is no solution z : J → Rn with I ⊂ J and z|I = y. The interval I is open: I = (a, b).

Existence of a maximal solution of the initial value problem (4) can be shown by the
lemma of Zorn.

Proposition 1 Let G = R×Rn, (t0, y0) ∈ G. Let y : (a, b) → Rn be the maximal solution
of the initial value problem (4). If b = ∞, then the solution exists for all t > t0 (global
existence). If b < ∞, then we have

‖y(t)‖ → ∞ for t → b−.

2.2.2 Stability and attractiveness

Let f ∈ C0,1−(R × Rn,Rn), ẋ = f(t, x), let x(t, t0, x0) be the maximal solution with
x(t0) = x0. Let x̄ ∈ C1([t0,∞),Rn) be a fixed solution of the ODE with x̄(t0) = x̄0. All
solutions exist globally in a neighborhood of x̄, for given initial data.

Definition 4 (Stability, Lyapunov) x̄ is called stable, if

∀ t1 ≥ t0 ∀ ε > 0 ∃ δ > 0 : (‖x0 − x̄0‖ < δ ⇒ ‖x(t, t1, x0)− x̄(t)‖ < ε in [t1,∞))
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x̄ is called uniformly stable, if δ does not depend on t1 (which is always the case if f is
not dependent on or periodic in t).

Definition 5 (Attractiveness) x̄ is called attractive, if

∀ t1 ≥ t0 ∃ δ0 > 0 : (‖x0 − x̄0‖ < δ0 ⇒ lim
t→∞

‖x(t, t1, x0)− x̄(t)‖ = 0).

In this case, all solutions starting in the δ0 neighborhood of x̄(t1) are “attracted” by x̄. x̄
is called attractor for that trajectory.
Domain of attraction:

A(x̄) = {x0 ∈ Rn | ∃ t1 ≥ t0 : lim
t→∞

‖x(t, t1, x0)− x̄(t)‖ = 0}

x̄ is called uniformly attractive, if δ0 does not depend on t1 (which is the case if f is not
dependent on or periodic in t).
x̄ is called asymptotically stable, if x̄ is stable and attractive.

2.2.3 Continuous linear systems with constant coefficients

Let A ∈ Cn×n, and consider the linear system of ODEs

ẋ = Ax in I = R. (5)

We have:

x(t) = eλta is solution of (5) ⇔ a is eigenvector of A corr. to the eigenvalue λ.

If A is real and λ = µ+ iν is an eigenvalue of A with eigenvector a+ ib, then the complex
solution x(t) = eλt(a + ib) yields two real solutions by z1 = Re x and z2 = Im x.
The stationary points of the system ẋ = Ax are given by the vectors in the kernel of A.
In particular, if detA 6= 0, then there is only the stationary point 0.

2.2.4 Special case: Linear 2× 2 systems

Let A ∈ R2×2 and ż(t) = Az(t), where z(t) = (x(t), y(t))T . Let (x(t), y(t)) be a solution
curve of the autonomous 2D system. Each point (x, y) is assigned to a vector in the
tangent field.

The qualitative dynamic behavior (of the solution curves) depends on the eigenvalues.
Let λ1, λ2 6= 0, λ1 6= λ2.

Case 1 λ1, λ2 are real, λ1 · λ2 > 0 (i.e. they have the same sign)
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a) λ1, λ2 < 0. Then det(A) > 0, tr(A) < 0
⇒ (0, 0) is a stable, two-tangents node.

b) λ1, λ2 > 0. Then det(A) > 0, tr(A) > 0 (compare to a) with inverse time)
⇒ (0, 0) is an unstable, two-tangents node

Case 2 λ1 < 0, λ2 > 0. Then det(A) < 0.
This means: There is one stable and one unstable “direction”.

⇒ (0, 0) is a saddle.

Case 3 λ1 = λ̄2 with non-vanishing imaginary part, the eigenvalues are complex conju-
gated. Then tr(A)2 < 4det(A), det(A) > 0

a) Re(λ1) = Re(λ2) < 0 (; tr(A) < 0)
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⇒ (0, 0) is a stable spiral.

b) Re(λ1) = Re(λ2) > 0, then tr(A) > 0. This case is analogous to a) with inverse
time.

⇒ (0, 0) is an unstable spiral.

Further cases / special cases

• both eigenvalues are real and equal:

– there are two linearly independent eigenvectors
⇒ (0, 0) is a star (positive eigenvalues: unstable; negative eigenvalues:
stable)

– there is only one eigenvector (stability depending on the sign)
⇒ (0, 0) is a one-tangent node.

• the eigenvalues are purely imaginary
⇒ (0, 0) is a centre
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At least one eigenvalue is = 0: “degenerated”

The results are summarized in the so called trace-determinant diagram for linear 2×2
systems with constant coefficients:

2.2.5 General linear systems

For the stability of a linear system higher dimension:

Proposition 2 Consider the linear case ẋ = Ax, A ∈ Cn×n. Let σ(A) be the spectrum
of A.

1. 0 is asymptotically stable ⇔ Re σ(A) < 0

2. 0 is stable ⇔ Re σ(A) ≤ 0 and all eigenvalues λ with Re λ = 0 are semi-simple
(i.e., geometric and algebraic multiplicity are the same)

3. If there is a λ ∈ σ(A) with Re λ > 0, then 0 is unstable. (The reversed direction is
wrong!!!)

3 Nonlinear models

3.1 Discrete nonlinear models

The general nonlinear one-dimensional difference equation of first order is:

xn+1 = f(xn). (6)

The discrete linear equation ( 1) can be considered as a special case of ( 6).

We introduce now some general concepts:
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Definition 6 x̄ is called stationary point of the system xn+1 = f(xn), if

x̄ = f(x̄).

x̄ is also called fixed point or steady state.

An example:
xn+1 = axn + b (i.e. f(xn) = axn + b), (7)

where
a: constant reproduction rate; growth / decrease is proportional to xn (Assumption:
a 6= 1)
b: constant supply / removal.

Definition 7 An autonomous discrete nonlinear system is given by

un+1 = f(un), n ∈ N0, (8)

where un ∈ Rm and f : Rm → Rm (or f : D → D, D ⊆ Rm).

If A is a m×m matrix, then the linear system f(x) = Ax is a special case of (8).

3.1.1 Analysis of discrete nonlinear dynamical systems

One of our main tasks is the investigation of the behavior of xn “in the long time run”,
i.e., for large n.
We look for stationary points of equation (7):

f(x̄) = x̄ ⇔ ax̄ + b = x̄

⇔ b = (1− a)x̄

⇔ x̄ =
b

1− a

Hence, there exists exactly one stationary state of (7).

Definition 8 Let x̄ be a stationary point of the system xn+1 = f(xn).
x̄ is called locally asymptotically stable if there exists a neighborhood U of x̄ such
that for each starting value x0 ∈ U we get:

lim
n→∞

xn = x̄.

x̄ is called unstable, if x̄ is not (locally asymptotically) stable.

How to investigate stability of stationary points?
Consider a stationary point x̄ of the difference equation xn+1 = f(xn). We are interested
in the local behavior near x̄. For this purpose, we consider the deviation of the elements
of the sequence to the stationary point x̄:

zn := xn − x̄
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zn has the following property:

zn+1 = xn+1 − x̄

= f(xn)− x̄

= f(x̄ + zn)− x̄.

Let the function f be differentiable in x̄, thus we get limh→0
f(x̄+h)−f(x̄)

h
= f ′(x̄) and

f(x̄ + h) = f(x̄) + h · f ′(x̄) + O(h2). This yields:

zn+1 = f(x̄ + zn)− x̄

= f(x̄ + zn)− f(x̄)

= zn · f ′(x̄) + O(z2
n).

O(z2
n) is very small and can be neglected, i.e. we approximate the nonlinear system

xn+1 = f(xn) by
zn+1 ≈ zn · f ′(x̄),

which is again a linear difference equation, for which we already know the stability criteria.

Proposition 3 Let f be differentiable. A stationary point x̄ of xn+1 = f(xn) is

• locally asymptotically stable, if |f ′(x̄)| < 1

• unstable, if |f ′(x̄)| > 1

Remark: These criteria are sufficient, but not necessary!

In case of the non-homogeneous, linear system we have f ′(x̄) = a, which means that
the stationary point is locally asymptotically stable if |a| < 1 (respectively, unstable, if
|a| > 1).

Definition 9 Let un+1 = f(un) be an autonomous system, f : D → D, D ⊆ Rm. A
vector v ∈ D is called equilibrium or steady state or stationary point or fixed point
of f , if f(v) = v and v ∈ D is called periodic point of f , if fp(v) = v. p is a period of v.

1. Let v ∈ D be a fixed point of f . Then v is called stable, if for each ε > 0 there is
δ > 0 such that

‖fn(u)− v‖ < ε for all u ∈ D with ‖u− v‖ < δ and all n ∈ N0

(i.e. fn(Uδ(v)) ⊆ Uε(v)). If v is not stable, it is called unstable.

2. If there is, additionally to 1., a neighborhood Ur(v) such that fn(u) → v as n →∞
for all u ∈ Ur(v), then v is called asymptotically stable.

3. Let w ∈ D be a periodic point of f with period p ∈ N. Then w is called (asymp-
totically) stable, if w, f(w), . . . , f p−1(w) are (asymptotically) stable fixed points of
f p.

Remark: Intuitively, a fixed point v is stable, if points close to v do not move far from
v. If additionally all solutions starting near v converge to v, v is asymptotically stable.
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Theorem 6 Let un+1 = f(un) be an autonomous system. Suppose f : D → D, D ⊆ Rm

open, is twice continuously differentiable in some neighborhood of a fixed point v ∈ D. Let
J be the Jacobian matrix of f , evaluated at v. Then

1. v is asymptotically stable if all eigenvalues of J have magnitude less than 1.

2. v is unstable if at least one eigenvalue of J has magnitude greater than 1.

Remark: If max{|λ| : λ eigenvalue of K} = 1, then we cannot give a statement about
the stability of the fixed point v by that criterion; the behavior then depends on higher
order terms than linear ones.

3.1.2 The 2D case

Here we consider the 2D case more concrete. The discrete system can be formulated with
the variables x and y:

xn+1 = f(xn, yn)

yn+1 = g(xn, yn) (9)

Stationary states x̄ and ȳ satisfy

x̄ = f(x̄, ȳ)

ȳ = g(x̄, ȳ)

We need the Jacobian matrix at a certain stationary point (x̄, ȳ):

A =

(
∂f
∂x
|x̄,ȳ

∂f
∂y
|x̄,ȳ

∂g
∂x
|x̄,ȳ

∂g
∂y
|x̄,ȳ

)

The eigenvalues λ1 and λ2 of A yield the information about stability of the system. In
some cases, it is easier to handle the following (necessary and sufficient) condition:
Both eigenvalues satisfy |λi| < 1 and the steady state (x̄, ȳ) is stable, if

2 > 1 + detA > |tr A|. (10)

This can be easily shown:
The characteristic equation reads

λ2 − tr Aλ + detA = 0

and has the roots

λ1,2 =
tr A±√tr2A− 4 detA

2

In case of real roots, they are equidistant from the value tr A
2

. Thus, first has to be checked
that this midpoint lies inside the interval (−1, 1):

−1 <
tr A

2
< 1 ⇔ |tr A/2| < 1.

Furthermore, the distance from tr A/2 to either root has to be smaller than to an endpoint
of the interval, i.e.

1− |tr A/2| >
√

tr2A− 4 detA

2
.
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Squaring leads to

1− |tr A|+ tr2A

4
>

tr2A

4
− detA,

and this yields directly
1 + detA > |tr A|.

Advantage: It is not necessary to compute explicitely the eigenvalues

3.2 Continuous nonlinear models

An example of continuous nonlinear dynamical system is the classical predator prey model,
introduced by Volterra and Lotka (1925/26)

ẋ = ax− bxy

(11)

ẏ = −dy + cxy,

where x(t) are the prey and y(t) are the predators at time t and all parameters are real
and larger that zero.
We compute the stationary points of (11):

ẋ = ax− bxy = 0 ⇔ x = 0 or y =
a

b

ẏ = cxy − dy = 0 ⇔ y = 0 or x =
d

c

⇒ (0, 0) and (d
c
, a

b
) are stationary points. (d

c
, a

b
) is called “coexistence point”. Analyse

the stability by a linearization.
Let (x̄, ȳ) be a stationary point. A perturbation is considered:

x = x̄ + u, y = ȳ + v,

this yields

d

dt
x =

d

dt
(x̄ + u) = f(x̄ + u, ȳ + v) = f(x̄, ȳ)︸ ︷︷ ︸

=0

+
∂f(x̄, ȳ)

∂x
u +

∂f(x̄, ȳ)

∂y
v + . . .

d

dt
y =

d

dt
(ȳ + v) = g(x̄ + u, ȳ + v) = g(x̄, ȳ)︸ ︷︷ ︸

=0

+
∂g(x̄, ȳ)

∂x
u +

∂g(x̄, ȳ)

∂y
v + . . .

; Approximation with linear terms:

u̇ =
∂f

∂x
u +

∂f

∂y
v

v̇ =
∂g

∂x
u +

∂g

∂y
v

This can also be done more generally, for dimension n. In the frame of

ẋ = f(x), f ∈ C1(Rn,Rn), f(x̄) = 0, x̄ ∈ Rn, (12)

17



we consider solutions x(t) of (12) in the neighborhood of x̄, x(t) = x̄ + y(t), then

ẏ(t) = f ′(x̄)y(t) + o(‖y‖).

The corresponding linearized system is

ż = Az, A = f ′(x̄) =

(
∂fi

∂xk

(x̄)

)
.

Proposition 4 (Linearization, Stability, Perron, Lyapunov) If the real parts of all
eigenvalues of A = f ′(x̄) are negative, then x̄ is exponentially asymptotically stable, i.e.
there are constants δ, C, α > 0, such that ‖x(0)− x̄‖ < δ implies

‖x(t)− x̄‖ < Ce−αt for t ≥ 0.

Addendum:
From Re σ(A) ∩ (0,∞) 6= ∅ it follows that x̄ is unstable.

When do linear and nonlinear model “correspond” locally?

Definition 10 x̄ is called hyperbolic, if 0 6∈ Re σ(f ′(x̄)).

Proposition 5 (Hartman & Grobman, 1964) Let x̄ be hyperbolic. Then, there is a
neighborhood U of x̄ and a homeomorphism H : U → Rn with H(x̄) = 0, which maps the
trajectories of ẋ = f(x) one-to-one into trajectories of ż = Az, with respect to the time
course.

3.2.1 Proceeding in the 2D case

Let Re λj 6= 0 for all j. Then all solution curves of the nonlinear system

ẋ = f(x, y)

ẏ = g(x, y)

show the same qualitative behavior at the stationary point (x̄, ȳ) as those of the corre-
sponding linear problem. (

u̇
v̇

)
=

(
∂f
∂u

∂f
∂v

∂g
∂u

∂g
∂v

)(
u
v

)

(derivatives at (x̄, ȳ))

Remark: This is not valid for Re λ = 0, i.e. there are problems with the examina-
tion of centres and spirals.

Example: application of the theory to the predator-prey model (11).
General Jacobian Matrix:

(
∂f
∂x

∂f
∂y

∂g
∂x

∂g
∂y

)
=

(
a− by −bx

cy cx− d

)
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• In (0, 0), the Jacobian is

(
a 0
0 −d

)

⇒ eigenvalues a, −d
⇒ saddle point (unstable)

• In (d
c
, a

b
), the Jacobian is:

(
a− ba

b
−bd

c

ca
b

cd
c
− d

)
=

(
0 − bd

c
ca
b

0

)

tr = 0, det = abcd
bc

= ad, thus:

λ1,2 =
tr

2
±

√
tr2

4
− det = ±i

√
ad (purely imaginary)

⇒ no statement about stability possible at the moment
We do not know now, if (d

c
, a

b
) is a spiral or if there are closed trajectories (solution

curves)!

3.2.2 Further results for 2D ODE systems

For (linear and) nonlinear ODE two-dimensional systems, there are two important results.

Theorem 7 (Poincare-Bendixson) Consider a trajectory x(t) ∈ R2 (or x(t) ∈ D,
where D ⊂ R2 is compact and connected, positively invariant) of the ODE ẋ = f(x), f
smooth, with only finitely many roots. If x(t) is bounded, then the ω-limit set is one of
the following objects:

• a stationary point

• a periodic orbit

• a homoclinic orbit or heteroclinic cycle.

A homoclinic orbit is an orbit that tends to the same stationary point for t → ±∞,
while a heteroclinic orbit tends to different stationary points. A heteroclinic cycle is a
closed chain of heteroclinic orbits. Somehow, a homoclinic orbit resp. a heteroclinic cycle
can be interpreted as a generalization of a periodic orbit.

Direct consequence of this theorem: If there is no stationary point, there has to be a
periodic orbit.

Remark: This proposition is not valid e.g. in higher dimensional spaces (famous coun-
terexample: The Lorenz attractor)

In some cases, the existence of closed orbits can be excluded by the so-called negative
criterion of Bendixson-Dulac:
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Proposition 6 (Negative criterion of Bendixson-Dulac) Let D ⊆ R2 be a simply
connected region and (f, g) ∈ C1(D,R) with div (f, g) = ∂f

∂x
+ ∂g

∂y
being not identically zero

and without change of sign in D. Then the system

ẋ = f(x, y)

ẏ = g(x, y)

has no closed orbits lying entirely in D.
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